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This article proposes a design strategy for acoustic metamaterial lattices which leverages the characteristic
multi-stability and kinematic amplification of the internal architecture to realize a re-configurable effective
mass distribution, enabling a corresponding frequency band structure of extreme tunability. The approach
builds metamaterial lattices from bi-stable elastic elements featuring the typical two-bar inertial amplification
mechanism whose deformation axis is uniquely misaligned with that of its elastic support such that the realized
amplification is configuration-specific. Conveniently, a change in the configuration does not simultaneously
alter the element dimensions and, therefore, the size/shape of the finite metamaterial structure remains
constant. Moreover, as the multi-stability and kinematic amplification are each based in geometry, scaling
the resulting metamaterial structure is expected to be straightforward. The dynamic performance of 1D/2D
metamaterial architectures exhibiting the proposed design strategy is analytically determined via Bloch wave
analysis and supported by numerical demonstration of the corresponding finite structures.

I. INTRODUCTION

Over the past decades, metamaterials – whose
engineered internal architecture grants unusual or
extraordinary macroscopic response – have garnered
increasing attention from researchers as the desire to
shape material behavior beyond natural limitations
(e.g., chemistry) arises within several areas of materials
science and engineering1–3. In particular, for acoustic
metamaterials, the clever design of the small scale
architecture – which regulates the propagation of
supported mechanical waves – has elicited such exotic
properties as negative effective mass4, stiffness5, and
refractive index6, and made plausible such fantastic
applications as sub-wavelength imaging7, cloaking8,9,
acoustic computation10, and topological insulation11 in
addition to wave focusing12, filtering13, and guiding14.
A review of the literature makes apparent that the

bulk of reported acoustic metamaterial architectures
are passive such that their properties and functions are
fixed at fabrication. Nevertheless, a tuning capacity
is desirable, not only to allow for adaptation in the
face of potentially changing service requirements, but
also to expand the range of response, in general.
Consequently, in recent years, a number of strategies
have been proposed to tune acoustic metamaterials
post-fabrication: piezoelectric controllers15–18,
pre-compression19 and pre-pressure20, geometric
instability21,22 and multi-stability23–27, etc. Despite
the diversity of approach, most of the previous studies
similarly realize tuning via modifications to the stiffness
parameter which, in many instances, is by only a few
percent without significant (potentially permanent)
structural distortion. Moreover, the use of soft
constituents is at the expense of load-bearing capacity
while that of special, stimuli responsive constituents
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necessarily restricts metamaterial architectures to
specific compositions. The literature also includes
relatively few metamaterial architectures whose tuning
capability is based upon mass density redistribution
via liquid transport28–30 which does not necessarily
suffer the same shortcomings as the strategies based on
variable stiffness; however, scaling such architectures
to extreme dimensions may not be practical due to,
e.g., the complexity of required plumbing and/or the
in inability of the vascular architecture to tolerate
the necessary pressures without buckling/rupture.
A method of tuning the dynamic response of acoustic
metamaterials without resulting in permanent distortion,
sacrificing load-bearing capacity or scalability, or relying
on particular material constituents remains a challenge
which this article aims to address.

The concept of inertial amplification can be idealized in
the inerter31, a two-node mechanical element analogous
to the spring and viscous dashpot with the property
that the equal and opposite force applied at the nodes
is proportional to the relative acceleration between them
through an effective mass parameter which is, generally,
not equal to of its static counterpart. In the context
of architected materials, Yilmaz et al.32–34 analytically
and numerically investigated the dynamic performance
of discrete lattices with embedded levered masses as
amplifying elements. The resulting inertial amplification
and anti-resonances generated low, wide, and deep gaps
in the frequency range of the dispersion band diagram
with less added (static) mass than those produced by
local resonance. Meanwhile, as inertial amplification
is, in part, a geometric manifestation, the scalability of
the architecture is unaffected and the composition not
restricted to specific material constituents. Moreover,
the static stiffness of the system remains constant. In
the intervening years, studies on the physics and utility of
inertial amplification via levered masses have extended to
continuous systems35,36, non-linear37,38 and topological39

effects, and energy harvesting40. In addition, the
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amplified velocities generated by lever mechanisms has
been exploited for extreme dissipation41. Yet, despite
the aforementioned features which suggest inertially
amplified architecture as an excellent foundation upon
which to develop a mass-based tuning capacity, no such
effort appears in the literature.

Members of a burgeoning class of mechanical
metamaterials characterized by multi-stable
architectures have demonstrated a tuning capacity with
respect to various material parameters – stiffness23–27,
Poisson’s ratio42, coefficient of thermal expansion43,
etc. – stemming from the re-configurability of the
internal geometry. Until now, this capacity has
not extended to the mass parameter as, short of
adding/removing material, re-configuring the internal
geometry is insufficient to effect the tuning. In this
article, we present a novel implementation of unit cell
multi-stability and kinematic amplification to tune
the value and distribution of the effective mass within
metamaterial architectures by purely geometric means,
impacting the wave dispersion response.

The remainder of the article is organized as
follows: Section II presents the multi-stable mass-spring
element with tunable inertial amplification ability which
composes the metamaterial models considered in this
article. A discussion of the geometric parameters which
track the degree of tunability (i.e., the disparity in
amplification between tuned states) is also provided.
Section III describes the analytical and numerical
methods for evaluating the metamaterial dynamics, and
Sec. IV presents the results which illustrate the tunable
performance. We demonstrate the concept in one-
and two-dimensional metamaterial architectures with a
variable mass distribution. Finally, Sec. V concludes the
article and suggests avenues for further study.

II. MODEL DESCRIPTION

A. The Multi-stable Potential

Figure 1a presents a blueprint for a discrete mechanical
metamaterial with variable inertial amplification
capability. The metamaterial unit cell consists of a
two-bar mechanism with masses, m and ma, localized
at the left boundary and internal joints, respectively,
such that the non-zero relative displacement of the unit
cell boundaries results in an amplified displacement for
ma. In addition to the internal joint, the rigid links
of lengths, ℓ1 and ℓ2, are coupled by a linear spring of
stiffness, k, which penalizes the unit cell deformation.
The mechanism geometry resembles that which appears
in several of the above-cited works related to inertial
amplification; however, the specific implementation in
this article ensures that the kinematics – therefore, the
corresponding inertial amplification – associated with
the two stable configurations (s = 1, 2) are unique. In
this article, the mechanism deformation axis (i.e., line

FIG. 1. Multi-stable Metamaterial with Tunable Mass
Distribution. (a) Model of multi-stable metamaterial with
tunable mass distribution. (b) The unit cell non-convex
energy landscape [k = 10, ℓ1 = 1/4, ℓ2 = 143/535, and
(xc, yc) = (1/2, 1/20)] displaying two stable configurations
of the bi-stable inertial amplification element. (c) The two
stable configurations of the bi-stable element.

through nodes 1 and C) and that of the metamaterial
(i.e, lattice vector) are misaligned. The non-convex
potential function, ψ (see Appendix), varies with
φ ∈ [0, 2π], the angle formed by ℓ1 and the x-axis. This
choice of deformation parameters facilitates a visual
correlation between the energy diagram in Fig. 1b
and the configurations depicted in Fig. 1c. Written
explicitly:

ψ(φ) =
k

2

(√
ℓ22 − [yc − ℓ1 sin(φ)]2 − |xc − ℓ1 cos(φ)|

)2

,

(1)

where, in terms of ℓ1 and the stable configuration, φs,

ℓ22 = [xc − ℓ1 cos(φs)]
2 + [yc − ℓ1 sin(φs)]

2.
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FIG. 2. Effective Mass Disparity. For fixed ℓ1 and ℓ2, the
location (xc, yc) of node C (equivalently, choice of φs and
θs) controls the accessible effective mass associated with each

configuration. The above image maps (xc, yc) to m
(1)
eff /m

(2)
eff ,

indicating the factor by which m
(1)
eff exceeds m

(2)
eff . The (xc, yc)

pairs for which ℓ1 + ℓ2 < ℓ3 or ℓ3 < |ℓ1 − ℓ2| are incompatible
with the geometry.

For the design, the two degenerate energy minima
in Fig. 1b imply that the length of the tuning
element in each stable configuration is identical.
Although not critical, this feature is beneficial as
it permits re-configuring the tuning element without
necessitating that the host metamaterial undergo a
change in size/shape; eliminating the degeneracy
while maintaining the bi-stability, renders the element
length configuration-dependent in addition to the
inertial amplification. Movie S1 demonstrates the
reconfiguration within a 2D system. In the analyses to
follow, the small-amplitude dynamics of metamaterials
with bi-stable inertia amplification elements (i.e., unit
cell in Fig. 1a sans mass, m) are assessed about about
stable configurations where we adopt the convention,
φ1 < φ2.

B. Mechanism Equations and Inertial Amplification

The equations governing the dynamics of an isolated
unit cell constrained to motion along one dimension
emerge from the Lagrangian, L = T − V , where T and
V are the kinetic and potential energies of the system,
respectively. Specifically,

T =
1

2
mu̇21 +

1

2
mau̇

2
a +

1

2
mav̇

2
a , (2a)

V =
1

2
k(u2 − u1)

2. (2b)

Ultimately, the system configuration is determined
by a single degree of freedom such that, for small
displacements, the motion of mechanism mass is a

linear function of the relative nodal displacement (see
Appendix) and the Lagrangian a function of nodal values,
i.e., L(u, u̇) with uT = [u1 u2]. Applying Lagrange’s
equations yields the matrix equations of motion, Mü +
Ku = 0, where M and K are the system mass and
stiffness matrices, respectively:

M =

[
m+maδ11 −maδ12/2
−maδ21/2 maδ22

]
, K =

[
k −k
−k k

]
, (3)

with coefficients, δij , that relate to the configuration of
the system:

δ11 = [cos(φs) csc(φs − θs)]
2

δ12 = δ21 = 2 cos(φs) cos(θ) cot(φs − θs) csc(φs − θs)

δ22 = [cos(θs) csc(φs − θs)]
2
.

Observe, the characteristic inertial coupling between u1
and u2 as suggested by the non-zero off-diagonal entries
in M. Recognizing that the isolated unit cell possesses
only a single non-zero mode of vibration further simplifies
the dynamics description to one equation:

[mst + (δ11 + δ12 + δ22 − 1)ma]ü+ 4ku = 0, (4)

where the coefficient of ü is the effective inertia, meff , of
the system. For the special case in which φs = π − θs,
Eq. (4) recovers the result obtained by Yilmaz et al.32.
Apparently, although the total static mass of the system
is mst = m + ma, the effective mass can be much
larger via δij and the outsized influence they provide
to even small ma. The static stiffness as well as the
system dimension, a, remain unaffected. Moreover, as
the element is bi-stable and δij are configuration-specific,
so too ismeff ; thus, presenting the opportunity for tuning
the dynamic response post-fabrication via geometry, i.e.,
without the need to add/remove material or to invoke
stimuli-response elastic constituents. This is especially
true for scenarios in which yc ̸= 0.

As an illustration of the potential disparity in dynamic
response between the two stable configurations, Fig. 2

plots the relative effective mass, m
(1)
eff /m

(2)
eff (superscript

denoting the stable configuration), as a function of
(xc, yc). Here and in the following, we selectm = 1,ma =
1/10, k = 1, ℓ1 = 0.115, and ℓ2 = 0.100. Apparently, the
bi-stable mechanism can manifest an effective mass in
configuration 1○ that is several times larger than that in
configuration 2○. The disparity grows as φ1 → 0 and
φ2 → π/2 simultaneously which, respectively, maximizes
the inertial amplification effect in the first configuration
while diminishing it in the second. In the remainder
of the article, we utilize (xc, yc) = (0.100, 0.015) which

corresponds to m
(1)
eff = 40.214 and m

(2)
eff = 1.

III. DYNAMIC ANALYSIS

We are interested in the post-fabrication adjustable
(linear) dynamic response of metamaterial systems for
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which the bi-stable element is a key component of the
internal architecture. To this end, we consider the
time evolution of a small-amplitude disturbance within
one- and two-dimensional metamaterial systems using
established analytical and numerical techniques.

A. Dispersion Relations

In general, the matrix equations of motion for an
arbitrary unit cell about a stable configuration in a
discrete or discretized medium are of the form, Mü +
Ku = f , where f collects the forces applied at the
unit cell boundaries by its immediate neighbors. By
virtue of the spatially periodic response specified by
Bloch theorem, u[κ · (x + a), t] = u(x, t)eiκ·a with
wavevector, κ, the displacement vector can be condensed
to only the essential degrees of freedom, ue. The
wavevector-dependent transformation matrix, T, relates
the full and essential sets: u = Tue. Therefore, in terms
of ue, the matrix equations of the periodic medium are
Meüe+Keue = 0 whereMe = THMT andKe = THKT
are the energy-consistent condensed mass and stiffness
matrices, respectively; THf = 0maintains that boundary
forces do no work and (□)H denotes the Hermitian
transpose. We assume a time-harmonic response, ue =
ũee

iωt, which establishes an eigenvalue problem in ω2

with the wavevector-dependent eigenvalues representing
the metamaterial-specific frequency dispersion relations.

B. Numerical Analysis

In order to examine the linear response of finite
metamaterial structures as well as verify the analytical
dispersion results, we simulate the evolution of
an initial, localized small-amplitude disturbance in
1D/2D periodic metamaterial systems incorporating the
bi-stable element at the unit cell level. The analytical
dispersion results are compared to the spatio-temporal
Fourier spectrum of the evolved signal. To mitigate the
effects of spectral leakage, a Hann window (Matlab
R2021a) with periodic sampling is applied to the signal
in both the space and time dimensions. The numerical
models incorporate the full non-linear equations of
motion. In addition, the models utilize mechanism links
of finite stiffness, kℓ ≫ k, which introduces additional,
predominantly high-frequency modes of oscillation but,
otherwise, does not affect the dynamics related to inertial
amplification32. Here, numerical integration via the
Noh-Bathe44 scheme remains stable for kℓ/k = 5000,
although essentially identical results arise for kℓ/k = 300.

FIG. 3. Frequency Band Structure (1D). (a) Analitycal
band structures [Eq. (5)] of 1D metamaterial with uniform
effective mass distribution (solid). For reference, the band
structure absent amplification (i.e., ma absorbed into m)
is also displayed (dashed). The spatio-temporal Fourier
spectra (blue) of a simulated signal in the corresponding
finite system. (b) Unique, non-uniform band structures (band
gaps shaded) of metamaterial defined by a four-mechanism
unit cell. The “stencil”, s○ s○ s○ s○, indicates the unit
cell mechanism configuration and, thus, the effective mass
distribution.

IV. RESULTS AND DISCUSSION

A. 1D Structures

For the scenario depicted in Fig. 1a in which
the bi-stable element comprises the unit cell of a
one-dimensional metamaterial, M and K are provided
in Eq. (3), and the application of Bloch’s theorem via
TT = [1 eiκa] yields the characteristic dispersion
relation:

ω2 =
2k[1− cos(κa)]

mst + [δ11 + δ22 − δ12 cos(κa)− 1]ma
, (5)
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FIG. 4. Frequency Band Structure (2D). (a) Square lattice metamaterial and corresponding unit cell with bi-stable inertial
amplification mechanisms. The boundary of the irreducible Brillouin zone is also illustrated. (b) Dispersion diagrams
corresponding to unique unit cell configurations indicated by the “stencil” (inset). The spatio-temporal Fourier spectra (blue)
of a simulated signal (Γ → X and Γ → R directions) in the corresponding finite system. In the anisotropic case, band gaps
(shaded regions) separate longitudinal (red, solid) and transverse (black, solid) modes. For comparison, the dispersion curves
of the statically equivalent system (dashed) represented by substituting m for mst = m + 2ma and removing the amplifying
mechanisms. (d) The displacement response of three 30a × 30a systems of unique unit cell configuration with all boundaries
free to (c) a centrally-located harmonic dilatation excitation at ω = 2.5. The inset shows directionality of the corresponding
group velocity, vg(φp). The color scaling indicates the magnitude of the local displacement averaged over 20 periods.

which the presence of the δij renders
configuration-specific. Figure 3a displays the dispersion
curves for the metamaterial architecture uniformly in
one of the two dynamically unique stable configurations,
illustrating a stark difference in response. In each

scenario, beyond a maximum frequency, ω
(s)
max, a

semi-infinite gap opens; however, ω
(1)
max is about a 15%

that of ω
(2)
max owing to the factor of forty separating

m
(1)
eff from m

(2)
eff . In addition, as m

(2)
eff /mst = 0.909,

the dispersion curve corresponding to s = 2 resembles
that of the statically equivalent metamaterial absent
inertial amplification (i.e., ma absorbed into m); for
ma = 0, the results are, essentially, indistinguishable.
These theoretical findings are supported by the Fourier
results from simulations of the corresponding non-linear
metamaterial structures (1×200 unit cells) following the
evolution of an initial, centrally-located displacement
perturbation of amplitude, A = 10−4. Excellent
agreement between the analytical and numerical results
is observed.

The configuration-specific frequency range over which
the metamaterial supports propagating waves begins to

illustrate the desired dynamics tuning capability, here,
through a novel mechanics-based modification of the
effective mass rather than the stiffness. Since each
bi-stable element within a metamaterial structure can
be independently configured, the spatial distribution
(periodic or otherwise) of effective mass is extremely
customizable and, as consequence, the number of unique
dynamic responses extends well beyond those of the two
uniform systems described by Eq. (5). For example,
1D periodic systems with two, serially-arranged bi-stable
elements per unit cell possess three dynamically unique
configurations wherein the frequency range of the band
structure may change; three elements permits four unique
responses, four yields eight, etc. Since, by design,
the static stiffness remains unaltered by changes in
configuration, each scenario exhibits identical long-wave
sound speed. Moreover, as illustrated in Fig. 3b for
a four-element unit cell, a non-uniform effective mass
distribution leads to configuration-specific, finite gaps in
the frequency range relevant to filtering applications.
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B. 2D Structures

Figure 4a shows the unit cell of a square lattice
incorporating the bi-stable inertial element along both
its horizontal and vertical edges. The corresponding
matrices M, K, and T are provided in the Appendix.
Apparently, setting the bi-stable element along each axis
to opposite configurations generates an anisotropic mass
effect – achieved through the amplification mechanism
rather than sub-wavelength resonances45–48 – as evident
by the unequal entries along the main diagonal of
M. Such a result may have application in, e.g.,
mode conversion for nondestructive inspection or the
realization of bi-functional lenses49.

Following the procedure in Sec. III A, we determine
the two-dimensional dispersion relations, ω(κ), which,
accounting for unit cell symmetry, may be tuned to
deliver one of three responses (Fig. 4b). Typically, the
band diagram is constructed by tracing the boundaries
(in reciprocal space) of the irreducible Brillouin zone
(IBZ). For the two elements in an identical state, the
path Γ → X → M → Γ delineates the IBZ boundary;
however, for the elements in opposite states, the change
in unit cell symmetry necessitates an extended path, Γ →
X → M → Γ → R → M . For a consistent presentation,
the diagrams in Fig. 4b adhere to the latter scheme
irrespective of unit cell symmetry. In addition, to garner
additional insight into the wave dynamics, we compute
the group velocity, vg = ∇ω, at particular points on
the dispersion surface and plot the results in Fig. 4d;
specifically, vg(φp), where φp = arctan (κy/κx) ∈ [0, 2π].
The directions of maximum group velocity indicate those
most accommodating wave propagation.

Figure 4b shows the frequency dispersion diagrams
and supporting Fourier results from simulation – initial
displacement perturbation applied at a line of sites
bisecting the system across the width and the response
measured along a perpendicular line of sites – for the
three dynamically unique unit cell configurations of the
2D metamaterial. In each case, the transverse mode
is most affected by inertial amplification compared to
that in the statically equivalent system. Similarly,
regardless of configuration, waves propagating along and
about the Γ → M direction experience large frequency
downshifts which we attribute to the amplifying elements
along each unit cell axis working more effectively in
concert. Setting the elements in opposite configurations
opens finite band gaps in the X → M and R → M
directions. Complementing the configuration-dependent
dispersion and Fourier results in Fig. 4b, Fig. 4d
depicts the time-averaged displacement response of the
corresponding finite systems subjected to a harmonic
excitation at ω = 2.5. For the finite system
with bi-stable elements uniformly in state s = 1, a
direction-independent semi-infinite band gap prevents
radiation away from the point of excitation. For the
system with elements uniformly in state s = 2, wave
propagation is most effective along the Γ → X and Γ →

FIG. 5. Extended Unit Cell. (a) Directional and (b) complete
band gaps corresponding to unit cells with unique layout
of amplifying element configurations (depicted above each
diagram).

R directions. These results are supported by the findings
in Fig. 4b and the polar plot of vg for ω = 2.5. For the
finite system with elements in opposite configurations,
wave propagation is expected along only the Γ → X
direction; however, the oval-shaped displacement field
appears to suggest wave propagation along the Γ → R
direction as well, although, slightly less successfully. We
attribute this to the anticipated band-gap attenuation
being weak in this direction. In Fig. 4b, the Fourier
results from simulation match the analytical dispersion
results.
Similar to the 1D system, alternative unit cell

definitions and element configurations (e.g., the extended
cell and morphologies depicted in Fig. 5) may generate
different finite band gaps (directional and complete) over
various frequency ranges according to the distribution
of the bi-stable element configuration; equivalently, the
distribution of effective mass. Moreover, prescribing
specific configurational patterns within a finite 2D/3D
system may yield improvised functional devices (e.g.,
waveguide)50. In some instances, the precise patterning
and requisite difference in effective mass between element
configurations for specific performance is difficult to know
a priori. An extensive computational exploration may
need be conducted to realize functional devices which
operate in the desired frequency ranges.

V. CONCLUSIONS

This article presents a novel implementation of
unit cell (geometric) multi-stability and the inertial
amplification mechanism to tune the dynamic response
of acoustic metamaterials. While there are several
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examples in the literature of multi-stability facilitating
modifications to the stiffness parameter, here, the
effective mass and its distribution are adjusted without
an accompanying residual strain (i.e., change to the
metamaterial dimensions) or transport of constituent
materials. Nevertheless, the mass-focused strategy
presented here may work in concert with those earlier
stiffness-aimed techniques toward acoustic metamaterials
of extreme tunability. However, the presented tuning
element lacks the capacity for continuous adjustments
possessed by some previously presented designs. While,
in this article, attention is restricted to bi-stable unit
cells, multi-stable cells may be readily assembled as well
(Fig. S1) which may assist in mitigating the effect of the
discrete adjustments offered by the presented strategy.

The article analytically and numerically investigates
the dynamic characteristics of 1D/2D metamaterial
models with embedded bi-stable inertia amplification
mechanisms. It is shown that the frequency band
structure depends on the specific configurations of the
bi-stable mechanisms: opening, sifting, and closing
band gaps as well as altering the direction of energy
flow. As the number of bi-stable mechanisms per unit
cell increase, so to do the number of unique dynamic
responses from which to choose. Moreover, in organizing
mechanism configurations into mesoscopic patterns, a
custom mass distribution is, in effect, achieved. In
2D systems, mechanisms in different states and not
identically oriented may give rise to anisotropic effective
mass. This is in contrast to the anisotropic mass
achieved upon homogenization in metamaterials with
sub-wavelength resonances45–48.

In this article, effecting the multi-stable
re-configuration is accomplished mechanically as,
for small systems this is a reasonable approach since,
except for the rigid-link requirement (ka ≫ k), the
metamaterial architecture is not reliant on particular
material constituents. However, as the number of tuning
elements to be manipulated becomes large, practicality
favors more the use of active components to assist in the
re-configuration. Provided the mechanism is suitably
sensitive, any of several environmental fields – electric,
magnetic, optical, thermal – may be leveraged to effect
the re-configuration. In this manner, active or smart
manipulation of acoustic metamaterial dynamics via
effective mass tuning is possible.

SUPPLEMENTARY MATERIAL

See the supplementary material for a figure (Fig.
S1) related to a multi-stable element with two
inertia-amplifying mechanisms and an animation (Mov.
S1) demonstrating reconfiguration within a 2D system.
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APPENDIX

Potential Function

The potential function, ψ, gives the energy stored
by the elastic component of the bi-stable mechanism
in relation to the mechanism deformation which, for
the particular assembly illustrated in Fig. 1a, can be
reflected in any of several configuration parameters. For
the dispersion and numerical analysis, the potential is
written in terms of the nodal displacements, ψ(u) =
k(u1 − u2)

2/2; however, for visualizing the non-convex
energy landscape and identifying the stable equilibrium
configurations, it is necessary that the potential be a
function of either φ or θ which are related. Absent the
rigid link, the instantaneous length, s, of the line segment
separating node A and node C is given by

s2 = [u2 − u1 + xc − ℓ1 cos(φ)]
2 + [yc − ℓ1 sin(φ)]

2.

Upon solving for the relative displacement, u2 − u1,
and substituting the result into ψ(u), the potential is
formulated in terms of φ:

ψ(φ) =
k

2

(√
s2 − [yc − ℓ1 sin(φ)]2 − |xc − ℓ1 cos(φ)|

)2

.

(A1)
Incorporating the rigid link eliminates s as a variable
(i.e., set s = ℓ2) and reveals Eq. (A1) to be a function of
φ alone. For the mechanism in the stable configuration
defined by φ = φs, the length of the rigid link is given
by:

ℓ22 = [xc − ℓ1 cos(φs)]
2 + [yc − ℓ1 sin(φs)]

2.

Figure 1b plots ψ(φ) for the set of material and geometric
constants provided in the main text. As discussed in the
main, the equi-potential nature of the energy landscape is
evidence to the fact that re-configuration does not result
in residual deformation of the unit cell.
Notably, provided yc ̸= 0 and φs ̸= π − θs, the

mechanism possesses two geometrically unique stable
configurations, φs = φ1,2, permitting the adjustable
inertial amplification factor and metamaterial wave
propagation dynamics highlighted in the main. From
an energy perspective, φs = φ1,2, follow as particular
solutions to ψ′(φ) = 0 for which the stiffness is positive,
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i.e., ψ′′(φ) > 0. Geometrically, the stable configurations
correspond to the intersections of the circles traced by
ℓ1 and ℓ2 if free to rotate about node 1 and node C,
respectively. By the law of cosines,

φs = arctan

(
yc
xc

)
±arccos

(
ℓ23 + ℓ21 − ℓ22

2ℓ1ℓ3

)
, φ ∈ [0, 2π],

(A2)
where ℓ23 = x2c + y2c and the state, s, is determined
following the convention, φ1 < φ2. Accordingly,

θs = arctan

[
ℓ1 sin(φs)− yc
ℓ1 cos(φs)− xc

]
, θs ∈ [0, 2π]. (A3)

The single mechanism presented in the main is
restricted to two stable configurations; however, it is
conceivable that n additional mechanisms may yield
a further 2n stable configurations (Fig. S1) and,
potentially, as many unique inertial amplification factors.
If node 1 and node C are the two foci of an ellipse, then
any number of two-link mechanisms may be added to the
multi-stable element provided that the link lengths sum
to the major axis. Thus, a multi-stable mechanism may
realize metamaterials of extreme tunability.

Kinematic Relations

The bi-stable element possesses a single degree of
freedom such that the motion of internal node A can
be determined in terms of those of external nodes
1 and 2. The following derivations establish these
relations for small displacements about an arbitrary
stable configuration. Consider the link lengths ℓ21 =
(xa − x1)

2 + (ya − y1)
2 and ℓ22 = (xa − xc)

2 + (ya − yc)
2

from which the corresponding differentials yield:

(xa − x1)(ua − u1) + (ya − y1)(va − v1) = 0, (A4a)

(xa − xc)(ua − u2) + (ya − yc)(va − v2) = 0, (A4b)

where the substitutions dxi → ui and dyi → vi are
implemented. Recall that node C displaces with node
2 via a rigid connection. Upon solving Eqs. (A4)
simultaneously, the desired relations are obtained:

ua =
u2 − cot(φs) tan(θs)u1 + tan(θs)(v2 − v1)

1− cot(φs) tan(θs)
, (A5a)

va =
u1 − u2 + v1 tan(φs)− v2 tan(θs)

tan(φs)− tan(θs)
. (A5b)

For the one-dimensional system, v1 and v2 vanish,
reducing Eqs. (A5) to the following:

ua =
u2 − cot(φs) tan(θs)u1
1− cot(φs) tan(θs)

, (A6a)

va =
u1 − u2

tan(φs)− tan(θs)
, (A6b)

which, for the special case of φs = π− θs, recovers those
arrived at in earlier related works32,35. Differentiating
Eqs. (A6) with respect to time and substituting into Eq.
(2a) conveniently reduces the kinetic energy – indeed,
the Lagrangian and associated equations of motion – to
a function of the u1 and u2 alone.

Square Lattice Matrix Equations

For the bi-stable element with motion in the 2D plane,
the kinetic energy is given by T = 1

2mu̇
2
1 + 1

2mv̇
2
1 +

1
2mau̇

2
a + 1

2mav̇
2
a . For the moment, consider only the

influence of mass, ma. Upon substitution of the time
derivatives of Eqs. (A5) into T , the configuration-specific
inertial contribution of ma is given by Ma = ∂t(∂u̇T ):

Ma = ma

δ11 δ12 −δ13 −δ14
δ22 −δ23 −δ24

symm. δ33 δ34
δ44

 ,
written consistent with uT = [u1 u2], where uT

i =
[ui vi] and i is the node number. In the preceding,

δ11 = [cos(φs) csc(φs − θs)]
2,

δ12 = δ21 = cos(φs) sin(φs) csc(φs − θs)
2,

δ13 = δ31 = cos(φs) cos(θs) cot(φs − θs) csc(φs − θs),

δ14 = δ41 = cos(φs) sin(θs) cot(φs − θs) csc(φs − θs),

δ22 = [sin(φs) csc(φs − θs)]
2,

δ23 = δ32 = sin(φs) cos(θs) cot(φs − θs) csc(φs − θs),

δ24 = δ42 = sin(φs) sin(θs) cot(φs − θs) csc(φs − θs),

δ33 = [cos(θs) csc(φs − θs)]
2,

δ34 = δ43 = cos(θs) sin(θs) csc(φs − θs)
2,

δ44 = [sin(θs) csc(φs − θs)]
2.

Following an assembly process, Ma is incorporated into
the mass matrix, M, of a two-dimensional system. For
the square lattice considered in the main, the unit cell M
and K are given by:
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M = ma



m

ma
+ δh11 + δv22 δh12 − δv12 −δh13 −δh14 −δv24 δv23 0 0

m

ma
+ δv11 + δh22 −δh23 −δh24 δv14 −δv13 0 0

δh33 δh34 0 0 0 0
δh44 0 0 0 0

δv44 −δv34 0 0
symm. δv33 0 0

0 0
0


,

K =
k

2



3 1 −2 0 0 0 −1 −1
3 0 0 0 −2 −1 −1

3 −1 −1 1 0 0
1 1 −1 0 0

1 −1 0 0
symm. 3 0 0

1 1
1


,

consistent with uT = [u0 u1 u2 u3]. Coefficients,
δhij and δvij , pertain to the bi-stable elements along
the horizontal and vertical edges of the unit cell,
respectively. For uT

e = [u0 v0], the corresponding Bloch
transformation matrix is given by:

T =



1 0
0 1
λx 0
0 λx
λy 0
0 λy

λxλy 0
0 λxλy


where λx = eiκxa and λy = eiκya.
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