Home Research Publications Teaching
Fundamentals of Solid Mechanics II

MAE 132B. Fundamentals of Solid Mechanics II (4)
Continuous mechanics of solids and its application to the mechanical response of machine and structural elements. Stress and strain in indicial notation; field equations and constitutive relations. Linear elastic stress analysis in torsion, plane stress and plane strain; stress concentrations; fracture mechanics. Extremum principles and structural stability. Viscoelasticity, plasticity, and failure criteria. Theorems of plastic limit analysis. Prerequisites: MAE 131A or SE 110A and MAE 105. Enrollment restricted to engineering majors only.

Finite Element Methods in Solid Mechanics I

MAE 232A. Finite Element Methods in Solid Mechanics I (4)
Finite element methods for linear problems in solid mechanics. Emphasis on the principle of virtual work, finite element stiffness matrices, various finite element formulations and their accuracy, and the numerical implementation required to solve problems in small strain, isotropic elasticity in solid mechanics. Prerequisites: graduate standing.

Waves in Elastic Solids

MAE 238. Waves in Elastic Solids (4)
Linear wave propagation; plane waves; reflection and refraction; dispersion induced by geometry and by material properties. Application of integral transform methods. Selected topics in nonlinear elastic, anelastic, and anisotropic wave propagation. Prerequisites: MAE 231A-B-C or consent of instructor.

Principal Investigator
Prof. Michael J. Frazier
office: Jacobs Hall (EBU I), Room 4201
email: mjfrazier[at]ucsd.edu

University of California, San Diego
Department of Mechanical and Aerospace Engineering
9500 Gilman Drive, MC-0411
La Jolla, California 92093